Get Answers to all your Questions

header-bg qa

5.  Find the sum of integers from 1 to 100 that are divisible by 2 or 5.

Answers (1)

best_answer

Numbers divisible by 2  from 1 to 100 are 2,4,6................100

This sequence is an A.P.

Here , first term =a =2

common difference = 2.

We know , a_n = a+(n-1)d

              100= 2+(n-1)2

      \Rightarrow \, \, 98 = (n-1)2

    \Rightarrow \, \, 49 = (n-1)

 \Rightarrow \, \, n=49+1=50

 

S_n = \frac{n}{2}[2a+(n-1)d]

       = \frac{50}{2}[2(2)+(50-1)2]

     = \frac{50}{2}[2(2)+49(2)]

      = 25\times 102

     = 2550

 

Numbers divisible by 5  from 1 to 100 are 5,10,15................100

This sequence is an A.P.

Here , first term =a =5

common difference = 5.

We know , a_n = a+(n-1)d

              100= 5+(n-1)5

      \Rightarrow \, \, 95 = (n-1)5

    \Rightarrow \, \, 19 = (n-1)

 \Rightarrow \, \, n=19+1=20

 

S_n = \frac{n}{2}[2a+(n-1)d]

       = \frac{20}{2}[2(5)+(20-1)5]

     = \frac{20}{2}[2(5)+19(5)]

      = 10\times 105=1050

     

Numbers divisible by both 2 and 5  from 1 to 100 are 10,20,30................100

This sequence is an A.P.

Here , first term =a =10

common difference = 10

We know , a_n = a+(n-1)d

              100= 10+(n-1)10

      \Rightarrow \, \, 90 = (n-1)10

    \Rightarrow \, \, 9 = (n-1)

 \Rightarrow \, \, n=9+1=10

 

S_n = \frac{n}{2}[2a+(n-1)d]

       = \frac{10}{2}[2(10)+(10-1)10]

     = \frac{10}{2}[2(10)+9(10)]

      = 5\times 110=550

\therefore Required \, \, sum=2550+1050-550=3050

Thus, the sum of integers from 1 to 100 that are divisible by 2 or 5 is 3050.

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads