Get Answers to all your Questions

header-bg qa

2.   Find the sum to n terms of each of the series in  1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + ...

Answers (1)

best_answer

the series =  1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + ...

n th term  = n(n+1)(n+2)=a_n

S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} k(k+1)(k+2)

                        =\sum _{k=1}^{n} k^3+3\sum _{k=1}^{n} k^2+2\sum _{k=1}^{n} k

                     =\left [ \frac{n(n+1)}{2} \right ]^2+\frac{3.n(n+1)(2n+1)}{6}+\frac{2.n(n+1)}{2}

                   =\left [ \frac{n(n+1)}{2} \right ]^2+\frac{n(n+1)(2n+1)}{2}+n(n+1)

                  =\left [ \frac{n(n+1)}{2} \right ] (\frac{n(n+1)}{2}+(2n+1)+2)

                 =\left [ \frac{n(n+1)}{2} \right ] \left ( \frac{n^2+n+4n+2+4}{2} \right )

                =\left [ \frac{n(n+1)}{2} \right ] \left ( \frac{n^2+5n+6}{2} \right )

                =\left [ \frac{n(n+1)}{4} \right ] \left ( n^2+5n+6 \right )

                 =\left [ \frac{n(n+1)}{4} \right ] \left ( n^2+2n+3n+6 \right )

                 =\left [ \frac{n(n+1)}{4} \right ] \left ( n(n+2)+3(n+2)\right )

                =\left [ \frac{n(n+1)}{4} \right ] \left ( (n+2)(n+3)\right )

              =\left [ \frac{n(n+1)(n+2)(n+3)}{4} \right ]

Thus, sum is 

                       =\left [ \frac{n(n+1)(n+2)(n+3)}{4} \right ]

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads