Get Answers to all your Questions

header-bg qa

Find the value of a, b, c and d, if 3\left[\begin{array}{ll} \mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d} \end{array}\right]=\left[\begin{array}{cc} \mathrm{a} & 6 \\ -1 & 2 \mathrm{~d} \end{array}\right]+\left[\begin{array}{cc} 4 & \mathrm{a}+\mathrm{b} \\ \mathrm{c}+\mathrm{d} & 3 \end{array}\right]

Answers (1)

We are given the following matrices,

3\left[\begin{array}{ll} \mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d} \end{array}\right]=\left[\begin{array}{cc} \mathrm{a} & 6 \\ -1 & 2 \mathrm{~d} \end{array}\right]+\left[\begin{array}{cc} 4 & \mathrm{a}+\mathrm{b} \\ \mathrm{c}+\mathrm{d} & 3 \end{array}\right]

We need to determine the value of a, b, c and d.

\begin{array}{l} \text { As, } 3\left[\begin{array}{ll} \text { a } & b \\ c & d \end{array}\right]=\left[\begin{array}{cc} a & 6 \\ -1 & 2 d \end{array}\right]+\left[\begin{array}{cc} 4 & a+b \\ c+d & 3 \end{array}\right] \\ \Rightarrow\left[\begin{array}{ll} 3 a & 3 b \\ 3 c & 3 d \end{array}\right]=\left[\begin{array}{cc} a+4 & 6+a+b \\ -1+c+d & 2 d+3 \end{array}\right] \end{array}

As both matrices are equal so their corresponding elements must also be equal.

\therefore 3a = a + 4 \Rightarrow 2a = 4 \Rightarrow a = 2

Similarly,

\Rightarrow 2b = 6 + a

As from above a = 2

3b = 6 + a + b \quad \therefore \quad 2b = 6 + 2 = 8 \quad \Rightarrow \quad b = 4

And, we have,

3c = -1 + c + d \quad \Rightarrow \quad 2c = d - 1 \quad \Rightarrow \quad 2c = 3 - 1 \quad \Rightarrow \quad c = \frac{2}{2} = 1

Posted by

infoexpert22

View full answer