Get Answers to all your Questions

header-bg qa

Find the values of a and b such that the function f defined by

f(x)=\left\{\begin{array}{ll} \frac{x-4}{|x-4|}+a, & \text { if } x<4 \\ a+b & , \text { if } x=4 \\ \frac{x-4}{|x-4|}+b, & \text { if } x>4 \end{array}\right.

is a continuous function at x = 4.

Answers (2)

Given,

f(x)=\left\{\begin{array}{ll} \frac{x-4}{|x-4|}+a, & \text { if } x<4 \\ a+b & , \text { if } x=4 \\ \frac{x-4}{|x-4|}+b, & \text { if } x>4 \end{array}\right.   …(1)

We need to find the value of a & b such that f(x) is continuous at x = 4.

A function f(x) is said to be continuous at x = c if,

Left hand limit(LHL at x = c) = Right hand limit(RHL at x = c) = f(c).

Mathematically we can represent it as-

\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)

Where h is a very small number very close to 0 (h→0)

Now, let’s assume that f(x) is continuous at x = 4.

\therefore \lim _{h \rightarrow 0} \mathrm{f}(4-\mathrm{h})=\lim _{h \rightarrow 0} \mathrm{f}(4+\mathrm{h})=\mathrm{f}(4)

to find a & b, we have to pick out a combination so that we get a or b in our equation.

In this question first we take LHL = f(4)

\therefore \lim _{h \rightarrow 0} f(4-h)=f(4)

\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{4-h-4}{|4-h-4|}+a\right\}=a+b  {using equation 1}

\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{-h}{|-h|}+a\right\}=a+b

\because h > 0 as defined in theory above.

\therefore|-h|=h

\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{-h}{h}+a\right\}=a+b

\Rightarrow \lim _{h \rightarrow 0}\{a-1\}=a+b

\Rightarrow a - 1 = a + b

\therefore  b = -1

Now, taking other combination,
RHL = f(4)

\lim _{h \rightarrow 0} \mathrm{f}(4+\mathrm{h})=\mathrm{f}(4)

\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{4+h-4}{|4+h-4|}+b\right\}=a+b  {using equation 1}

\underset{h \rightarrow 0}{\lim }\left\{\frac{h}{|h|}+b\right\}=a+b

\because  h > 0 as defined in theory above.

\therefore |h| = h

\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{h}{h}+b\right\}=a+b

\Rightarrow \lim _{h \rightarrow 0}\{b+1\}=a+b

⇒ b + 1 = a + b

∴ a = 1

Hence,

a = 1 and b = -1

Posted by

infoexpert21

View full answer

  

Posted by

infoexpert22

View full answer