Get Answers to all your Questions

header-bg qa

8. Find the values of x for which y = [x(x-2)]^{2}  is an increasing function.

Answers (1)

best_answer

Given function is,
f(x)\Rightarrow y = [x(x-2)]^{2}
f^{'}(x)\Rightarrow \frac{dy}{dx} = 2[x(x-2)][(x-2)+x]
                           = 2(x^2-2x)(2x-2)
                           = 4x(x-2)(x-1)
Now,
 f^{'}(x) = 0\\ 4x(x-2)(x-1) = 0\\ x=0 , x= 2 \ and \ x = 1
So, the intervals are (-\infty,0),(0,1),(1,2) \ and \ (2,\infty)
In interval  (0,1)and \ (2,\infty) ,  f^{'}(x)> 0
Hence, f(x)\Rightarrow y = [x(x-2)]^{2} is an increasing function in the interval  (0,1)\cup (2,\infty)

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads