Get Answers to all your Questions

header-bg qa

16. Find two positive numbers whose sum is 16 and the sum of whose cubes is
minimum.

Answers (1)

best_answer

let x an d y are positive two numbers 
It is given that 
x + y = 16 , y = 16 - x 
and  x^3 + y^3 is minimum
f(x) = x^3 + (16-x)^3
Now, 
f^{'}(x) = 3x^2 + 3(16-x)^2(-1)
f^{'}(x) = 0\\ 3x^2 - 3(16-x)^2 =0\\ 3x^2-3(256+x^2-32x) = 0\\ 3x^2 -3x^2+96x-768= 0\\ 96x = 768\\ x = 8\\
Hence, x = 8 is the only critical point 
Now,
f^{''}(x) = 6x - 6(16-x)(-1) = 6x + 96 - 6x = 96\\ f^{''}(x) = 96
f^{''}(8) = 96 > 0
Hence, x = 8 is the point of minima
 y = 16 - x
    = 16 - 8 = 8
Hence, values of x and y are 8  and 8 respectively 

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads