Get Answers to all your Questions

header-bg qa

Q8.    For the matrix A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}, verify that

            (ii) (A - A') is a skew symmetric matrix.

Answers (1)

best_answer

A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}

A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}

A - A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}  - \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}

A - A'= \begin{bmatrix} 1-1 & 5-6\\ 6-5 & 7-7 \end{bmatrix}

A - A'= \begin{bmatrix}0 & -1\\ 1& 0 \end{bmatrix}

(A - A')'= \begin{bmatrix}0 & 1\\ -1& 0 \end{bmatrix}=-(A-A')

We have A-A'=-(A - A')'

Hence ,  (A - A') is a skew-symmetric matrix.

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads