For which values of a and b, will the following pair of linear equations have infinitely many solutions?
x + 2y =1, (a – b)x+ (a + b)y = a + b – 2
Solution:
The given equations are
x + 2y = 1
(a – b) x + (a + b)y = a + b – 2
In equation
x + 2y = 1
a1 = 1, b1 = 2, c1 = –1
In equation
(a – b)x (a + b)y = a + b – 2
a2 = (a – b), b2 = (a + b), c2 = – (a + b – 2)
For infinitely many solutions
a + b = 2a –2b –a + 3b = 0 … (1) |
2a + 2b – 4 = a + b a + b –4 = 0 …(2) |
Add equations (1) and (2)
–a + 3b + a + b = 0 + 4
4b = 4
b = 1
Put b = 1 in equation (1)
–a + 3 (1) = 0
a = 3
Hence a = 3 and b = 1.