Form the biconditional statement , where
i) p : The unit digit of an integer is zero.
q : It is divisible by 5.
ii) p : A natural number n is odd.
q : Natural number n is not divisible by 2.
iii) p : A triangle is an equilateral triangle.
q : All three sides of a triangle are equal.
i) We use only & only if in biconditional statements, here,
p: The unit digit of an integer is zero.
q: It is divisible by 5.
Thus, p ↔ q = Unit digit of an integer is zero if and only if it is divisible by 5.
ii) We use only & only if in biconditional statements, here,
p: A natural no. n is odd
q: Natural no. n is not divisible by 2.
Thus, p ↔ q = A natural no. is odd if and only if it is not divisible by 2.
iii) We use only & only if in biconditional statements, here,
p: A triangle is an equilateral triangle.
q: All three sides of a triangle are equal.
p ↔ q = A triangle is an equilateral triangle if and only if all three sides of triangle are equal.