Get Answers to all your Questions

header-bg qa

Q7.16     From a uniform disk of radius R , a circular hole of radius R/2  is cut out. The centre
              of the hole is at R/2 from the centre of the original disc. Locate the centre of gravity
             of the resulting flat body.

Answers (1)

best_answer

Let the mass per unit area of the disc be \sigma.

So total mass is   =\ \Pi r^2\sigma\ =\ m

                                                               Rotational motion,     20131

       Mass of the smaller disc is given by : 

                                                                               =\ \Pi \left ( \frac{r}{2} \right )^2\sigma\ =\ \frac{m}{4}

Now since the disc is removed, we can assume that part to have negative mass with respect to the initial condition.

So, the centre of mass of the disc is given by the formula :

                                                               x\ =\ \frac{m_1r_1\ +\ m_2r_2}{m_1\ +\ m_2}

or                                                                    =\ \frac{m\times 0\ -\ \frac{m}{4}\times \frac{r}{2}}{m\ -\ \frac{m}{4}}

                                                                      =\ \frac{-r}{6}

Hence the centre of mass is shifted   \frac{r}{6}   leftward from point O.

Posted by

Devendra Khairwa

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads