Get Answers to all your Questions

header-bg qa

Given that x-\sqrt{5}  is a factor of the cubic polynomial x^3 -3 \sqrt{5}x^2 + 13x - 3\sqrt{5} , find all the zeroes of the polynomial.

Answers (1)

Answer.  \sqrt{5},\sqrt{5}+\sqrt{2}, \sqrt{5}-\sqrt{2}

Solution.        

The given cubic polynomial is x^3 -3 \sqrt{5}x^2 + 13x - 3\sqrt{5}

Hence x-\sqrt{5}  is a factor

Use divided algorithm

x^3 - 3\sqrt{3} x^2 + 13x - 3\sqrt{5}=(x-\sqrt{5}) (x^{2}-2\sqrt{5}+3)

                     =(x-\sqrt{5}) (x^{2}-2\sqrt{5}+3)

                    x^{2}-2\sqrt{5}+3

a = 1, b = -2\sqrt{5} , c = 3

x=\frac{-b\pm \sqrt{b^{2}}-4ac}{2a}

x=\frac{2\sqrt{5}\pm \sqrt{20-12}}{2}

x=\frac{2\sqrt{5}\pm 2\sqrt{2}}{2}=\sqrt{5}\pm \sqrt{2}

x=\sqrt{5}+\sqrt{2}, \sqrt{5}-\sqrt{2}

Hence, \sqrt{5},\sqrt{5}+\sqrt{2}, \sqrt{5}-\sqrt{2}  are the zeroes of the polynomial.

Posted by

infoexpert21

View full answer