Get Answers to all your Questions

header-bg qa

Q 7.10(b)     Given the moment of inertia of a disc of mass M and radius R  about any of its
                    diameters to be MR^{2}/4 , find its moment of inertia about an axis normal to the
                   disc and passing through a point on its edge.

Answers (1)

best_answer

We know that moment of inertia of a disc about its diameter is :

                                                                                                          =\ \frac{1}{4}MR^2

Using perpendicular axes theorem we can write :

Moment of inertia of disc about its centre:-  

                                                                                      =\ \frac{1}{4}MR^2\ +\ \frac{1}{4}MR^2\ =\ \frac{1}{2}MR^2

Using parallel axes theorem we can find the required MI :

Moment of inertia about an axis normal to the disc and passing through a point on its edge is given by :

                                                                                       =\ \frac{1}{2}MR^2\ +\ MR^2\ =\ \frac{3}{2}MR^2           

Posted by

Devendra Khairwa

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads