Get Answers to all your Questions

header-bg qa

2.14  How much energy is required to ionise a H atom if the electron occupies n = 5 orbit? Compare your answer with the ionization enthalpy of H atom ( energy required to remove the electron from n =1 orbit).

Answers (1)

best_answer

The energy which is required to ionize an H atom if the electron occupies n=5 orbit is:

E_{n} = \frac{-21.8\times10^{-19}}{n^2} J\ atom^{-1}

For ionization from 5th orbit, n_{1} = 5\ and\ n_{2} = \infty

Therefore, \triangle E = E_{2}-E_{1} =-21.8\times10^{-19}\times\left ( \frac{1}{n_{2}^2} - \frac{1}{n_{1}^2}\right ) = 21.8\times10^{-19}\times\left ( \frac{1}{n_{1}^2}-\frac{1}{n_{2}^2} \right )=21.8\times10^{-19}\times\left ( \frac{1}{5}^2 - \frac{1}{\infty} \right ) = 8.72\times10^{-20}J

For ionization from 1st orbit, n_{1} = 1\ and\ n_{2} = \infty

Therefore,

\triangle E' =21.8\times10^{-19}\times\left ( \frac{1}{1}^2 -\frac{1}{\infty} \right ) = 21.8\times10^{-19}J

\frac{\triangle E'}{\triangle E} = \frac{21.8\times10^{-19}}{8.72\times10^{-20}} = 25

Hence, 25 times less energy is required to ionize an electron in the 5th orbital of the hydrogen atom as compared to that in the ground state.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads