Get Answers to all your Questions

header-bg qa

If A, B, C, D are the points with position vectors

\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}, 2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}, 2 \hat{\mathrm{i}}-3 \hat{\mathrm{k}}, 3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}  respectively, find the projection of \overrightarrow{\mathrm{AB}}  along \overrightarrow{\mathrm{CD}} .

Answers (1)

Given are points, A, B, C and D.

Let O be the origin.

We have,

Position vector of A

\\ \begin{aligned} &=\hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}}\\ &\Rightarrow \overrightarrow{\mathrm{OA}}=\hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}}\\ &\text { Position vector of } \mathrm{B}=2 \hat{\imath}-\hat{\jmath}+3 \hat{\mathrm{k}}\\ &\Rightarrow \overrightarrow{\mathrm{OB}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}} \end{aligned}

\\ \begin{aligned} &\text { Position vector of } c=2 \hat{\imath}-3 \hat{\mathrm{k}}\\ &\Rightarrow \overrightarrow{\mathrm{OC}}=2 \hat{\mathrm{\imath}}-3 \hat{\mathrm{k}}\\ &\text { Position vector of } D=3 \hat{\imath}-2 \hat{\jmath}+\hat{\mathrm{k}}\\ &\Rightarrow \overrightarrow{\mathrm{OD}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}} \end{aligned}

\\ $Now, let us find out $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{CD}}$\\ $\overrightarrow{\mathrm{AB}}=$ position vector of B-Position vector of $\mathrm{A}

\\ \Rightarrow \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \\ \Rightarrow \overrightarrow{\mathrm{AB}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})-(\hat{\imath}+\hat{\mathrm{j}}-\hat{\mathrm{k}}) \\ \Rightarrow \overrightarrow{\mathrm{AB}}=2 \hat{\mathrm{i}}-\hat{1}-\hat{\mathrm{j}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\hat{\mathrm{k}} \\ \Rightarrow \overrightarrow{\mathrm{AB}}=\hat{\imath}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}

\\ $And, $\overrightarrow{\mathrm{CD}}=$ position vector of $D$ -Position vector of $\mathrm{C}$\\ $\Rightarrow \overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{OD}}-\overrightarrow{\mathrm{OC}}$\\ $\Rightarrow \overrightarrow{\mathrm{CD}}=(3 \hat{\imath}-2 \hat{\jmath}+\hat{\mathrm{k}})-(2 \hat{\imath}-3 \hat{\mathrm{k}})$ \\$\Rightarrow \overrightarrow{\mathrm{CD}}=3 \hat{\imath}-2 \hat{\imath}-2 \hat{\jmath}+\hat{\mathrm{k}}+3 \hat{\mathrm{k}}

\\ \begin{aligned} &\Rightarrow \overrightarrow{\mathrm{CD}}=\hat{\imath}-2 \hat{\jmath}+4 \hat{\mathrm{k}}\\ &\text { The projection of } \overrightarrow{\mathrm{AB}} \text { along } \overrightarrow{\mathrm{CD}} \text { is given by, }\\ &\text { Projection }=\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CD}}}{|\overrightarrow{\mathrm{CD}}|} \end{aligned}

\\ \begin{aligned} &\Rightarrow \text { Projection }=\frac{(\hat{\imath}-2 \hat{\jmath}+4 \hat{\mathrm{k}})(\hat{\imath}-2 \hat{\jmath}+4 \hat{\mathrm{k}})}{|\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}|}\\ &\Rightarrow \text { Projection }=\frac{(\hat{\imath})(\hat{i})+(-2 \hat{\jmath})(-2 \hat{\jmath})+(4 \hat{\mathrm{k}})(4 \hat{\mathrm{k}})}{\sqrt{1^{2}+(-2)^{2}+4^{2}}}\\ &\text { "we know that, } \hat{i} \times \hat{i}=\hat{\jmath} \times \hat{\jmath}=\hat{\mathrm{k}} \times \hat{\mathrm{k}}=1 \text { and } \hat{i} \times \hat{\mathrm{j}}=\hat{i} \times \hat{\mathrm{k}}=\hat{\mathrm{j}} \times \hat{\mathrm{k}}=0 \end{aligned}

\\ \begin{aligned} &\text { So }\\ &\left(a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}\right)\left(b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}\right)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\\ &\text { Also, we know that, } \left.|a \hat{\imath}+b \hat{\jmath}+c \hat{k}|=\sqrt{a^{2}+b^{2}+c^{2}}\right]\\ &\Rightarrow \text { Projection }=\frac{1+4+16}{\sqrt{1+4+16}}\\ &\Rightarrow \text { Projection }=\frac{21}{\sqrt{21}} \end{aligned}

Multiply numerator and denominator by √21.

\\ \begin{aligned} &\Rightarrow \text { Projection }=\frac{21}{\sqrt{21}} \times \frac{\sqrt{21}}{\sqrt{21}}\\ &\Rightarrow \text { Projection }=\frac{21 \times \sqrt{21}}{21}\\ &\Rightarrow \text { Projection }=\sqrt{21}\\ &\text { Thus, projection of } \overrightarrow{\mathrm{AB}} \text { along } \overrightarrow{\mathrm{CD}} \text { is } \sqrt {21} \text { units. } \end{aligned}

Posted by

infoexpert22

View full answer