We are given the following matrices A and B, such that
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal, that is it switches the row and column indices of the matrix by producing another matrix denoted as AT or A’.
So, in transpose of a matrix,
The rows of the matrix become the columns of the matrix. .
(i). We need to verify that, (2A + B)’ = 2A’ + B’.
Take L.H.S: (2A + B)’
By substituting the matrices A and B, in (2A + B)’, we get,
For transpose of (2A + B),
(3, 6), (14, 6) and (17, 15) are 1st, 2nd and 3rd rows respectively, will become 1st, 2nd and 3rd columns respectively.
Take R.H.S: 2A’ + B’
If
(1, 2), (4, 1) and (5, 6) are 1st, 2nd and 3rd rows respectively, will become 1st, 2nd and 3rd columns respectively.
Multiply both sides by 2 we get,
Also,
If
(1, 2), (6, 4) and (7, 3) are 1st, 2nd and 3rd rows respectively, will become 1st, 2nd and 3rd columns respectively.
Since, L.H.S = R.H.S
Thus, (2A + B)’ = 2A’ + B’.
(ii). We need to verify that, (A - B)’ = A’ - B’.
Take L.H.S: (A - B)’
By substituting the matrices A and B in (A - B)’, we get,
To find transpose of (A - B),
(0, 0), (-2, -3) and (-2, 3) are 1st, 2nd and 3rd rows respectively, will become 1st, 2nd and 3rd columns respectively.
Take R.H.S:
rows respectively, will become columns respectively.
Also,
(1, 2), (6, 4) and (7, 3) are 1st, 2nd and 3rd rows respectively, will become 1st, 2nd and 3rd columns respectively.
When Subtracting , we get,