Get Answers to all your Questions

header-bg qa

Q3.    If A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}  and B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}, then verify

            (i)    (A + B)' = A' + B'

Answers (1)

best_answer

A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}     B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}

A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}

To prove: (A + B)' = A' + B'

L.H.S : (A + B)' = 

A+B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}  + \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix} 

A+B = \begin{bmatrix} 3+(-1) & -1+(-1)&0+1\\ 4+1 &2+2 & 1+3 \end{bmatrix}

A+B = \begin{bmatrix} 2 & -2&1\\ 5 &4 & 4 \end{bmatrix}

\therefore \, \, \, (A+B)' = \begin{bmatrix} 2 & 5\\ 1 &4\\1 & 4 \end{bmatrix}

R.H.S:  A' + B'

A'+B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}  + \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}

A'+B' = \begin{bmatrix} 2 & 5\\ 1 &4 \\ 1 & 4 \end{bmatrix}

Hence, L.H.S = R.H.S i.e. (A + B)' = A' + B'.

 

 

 

 

 

 

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads