Get Answers to all your Questions

header-bg qa

Q17.    If 

A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} and

 I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix},

 find k so that A^{2} = kA - 2I.

Answers (1)

best_answer

A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}

A \times A= \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}\times \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

A^{2} = \begin{bmatrix}9-8 &-6+4\\12-8&-8+4 \end{bmatrix}

A^{2} = \begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}

A^{2} = kA - 2I

 \begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -2 \begin{bmatrix}1 &0\\0&1 \end{bmatrix}

\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -\begin{bmatrix}2 &0\\0&2 \end{bmatrix}

\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}+  \begin{bmatrix}2 &0\\0&2 \end{bmatrix} =k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

\begin{bmatrix}1+2 &-2+0\\4+0&-4+2 \end{bmatrix}=\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}

            \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}  =\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}

We have,3=3k

              k=\frac{3}{3}=1

Hence, the value of k is 1.

 

 

 

 

 

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads