Get Answers to all your Questions

header-bg qa

13.   If  \frac{a+ bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx} (x\neq 0 )  then show that a, b, c and d are in G.P.

Answers (1)

best_answer

Given : 

 \frac{a+ bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx} (x\neq 0 )

Taking ,

\frac{a+ bx}{a-bx} = \frac{b+cx}{b-cx}

\Rightarrow (a+ bx) (b-cx) = (b+cx) (a-bx)

\Rightarrow ab+ b^2x-bcx^2-acx) = ba-b^2x+acx-bcx^2

\Rightarrow 2 b^2x = 2acx

\Rightarrow b^2 = ac

\Rightarrow \frac{b}{a}=\frac{c}{b}..................1

Taking,

\frac{b+cx}{b-cx} = \frac{c+dx}{c-dx}

\Rightarrow (b+cx)(c-dx)=(c+dx)(b-cx)

\Rightarrow bc-bdx+c^2x-cdx^2=bc-c^2x+bdx-cdx^2

\Rightarrow 2bdx=2c^2x

\Rightarrow bd=c^2

\Rightarrow \frac{d}{c}=\frac{c}{b}..............................2

From equation 1 and 2 , we have

\Rightarrow \frac{d}{c}=\frac{c}{b}=\frac{b}{a}

Thus, a,b,c,d are in GP.

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads