Get Answers to all your Questions

header-bg qa

Q : 11      If   \small a+ib=\frac{(x+i)^2}{2x^2+1} , prove that  \small a^2+b^2=\frac{(x^2+1)^2}{(2x^2+1)^2}.

Answers (1)

best_answer

It is given that
\small a+ib=\frac{(x+i)^2}{2x^2+1}
Now, we will reduce it into

\small a+ib=\frac{(x+i)^2}{2x^2+1} = \frac{x^2+i^2+2xi}{2x^2+1}=\frac{x^2-1+2xi}{2x^2+1}=\frac{x^2-1}{2x^2+1}+i\frac{2x}{2x^2+1}
On comparing real and imaginary part. we will get
a=\frac{x^2-1}{2x^2+1}\ and \ b=\frac{2x}{2x^2+1}
Now,
a^2+b^2=\left ( \frac{x^2-1}{2x^2+1} \right )^2+\left ( \frac{2x}{2x^2+1} \right )^2
                = \frac{x^4+1-2x^2+4x^2}{(2x^2+1)^2}
                = \frac{x^4+1+2x^2}{(2x^2+1)^2}
                = \frac{(x^2+1)^2}{(2x^2+1)^2}
Hence proved 

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads