Get Answers to all your Questions

header-bg qa

Q14  If either vector \vec a = 0 \: \: or \: \: \vec b = 0 \: \: then \: \: \vec a . \vec b = 0 . But the converse need not be true. Justify your answer with an example 

Answers (1)

best_answer

Let 

\vec a=\hat i-2\hat j +3\hat k

\vec b=5\hat i+4\hat j +1\hat k

we see that

\vec a.\vec b=(\hat i-2\hat j +3\hat k)(5\hat i+4\hat j +1\hat k)=5-8+3=0

we now observe that

|\vec a|=\sqrt{1^2+(-2)^2+3^2}=\sqrt{14}

|\vec b|=\sqrt{5^2+4^2+1^2}=\sqrt{42}

Hence here converse of the given statement is not true.

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads