Get Answers to all your Questions

header-bg qa

9.   If Q(0, 1) is equidistant from P(5, –3) and R(x, 6), find the values of x. Also find the distances QR and PR.

Answers (1)

best_answer

Given Q(0,1) is equidistant from P(5,-3) and R(x,6).

Then, the distances PQ = RQ.

Distance PQ = \sqrt{(5-0)^2+(-3-1)^2} = \sqrt{25+16} = \sqrt{41}

Distance RQ = \sqrt{(x-0)^2+(6-1)^2} = \sqrt{x^2+25}

\Rightarrow \sqrt{x^2+25} = \sqrt{41}

Squaring both sides, we get

\Rightarrow x^2 = 16

\Rightarrow x = \pm 4

The points are: R(4,6)\ or\ R(-4,6.)

CASE I : when R is  (4,6)

The distances QR and PR.

QR = \sqrt{(0-4)^2+(1-6)^2} = \sqrt{16+25} = \sqrt{41}

PR = \sqrt{(5-4)^2+(-3-6)^2} = \sqrt{1^2+(-9)^2} = \sqrt{1+81} = \sqrt{82}

CASE II : when R is  (-4,6)

The distances QR and PR.

QR = \sqrt{(0-(-4))^2+(1-6)^2} = \sqrt{16+25} = \sqrt{41}

PR = \sqrt{(5-(-4))^2+(-3-6)^2} = \sqrt{9^2+(-9)^2} = \sqrt{81+81} = 9\sqrt{2}

Posted by

Divya Prakash Singh

View full answer