3. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of , then POA is equal to
(A) 50°
(B) 60°
(C) 70°
(D) 80°
The correct option is (A)
It is given that, tangent PA and PB from point P inclined at
In triangle OAP and OBP
OA =OB (radii of the circle)
PA = PB (tangents of the circle)
Therefore, by SAS congruence
By CPCT,
Now, OPA = 80/4 = 40
In PAO,
= 50