Get Answers to all your Questions

header-bg qa

2.61    If the position of the electron is measured within an accuracy of \pm 0.002\ \textup{nm}, calculate the uncertainty in the momentum of the electron. Suppose the momentum of the electron is h/4\pi_m\times0.05 \ \textup{nm}, is there any problem in defining this value.

Answers (1)

best_answer

We have given the uncertainty in position, i.e., \triangle x= \pm 0.002\ nm = 2\times10^{-12} m.

According to Heisenberg's Uncertainty Principle:

\triangle x\times \triangle p = \frac{h}{4\pi}

Where,

\triangle x is uncertainty in the position of the electron.

\triangle p is uncertainty in the momentum of the electron.

Then, \triangle p = \frac{h}{4\pi\times\triangle x}

\triangle p =\frac{6.626\times10^{-34}Js}{4\pi\times(2\times10^{-12}m)} =2.636\times10^{-23}Jsm^{-1}

Or 2.636\times10^{-23}kgms^{-1}          \left ( 1J- 1kgms^2s^{-1} \right )

The actual momentum of the electron:

\frac{h}{4\pi_{m}\times0.05\ nm}= \frac{6.626\times10^{-34}Js}{4\pi\times0.05\times10^{-9} m }

\Rightarrow p = 1.055\times10^{-24}kg\ m/s

Therefore, it cannot be defined because the actual magnitude of the momentum is smaller than the uncertainty.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads