Get Answers to all your Questions

header-bg qa

15. If \tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} =\frac{\pi}{4}, then find the value of x.

Answers (1)

best_answer

Using the identity \tan^{-1}x+\tan^{-1} y = \tan^{-1}{\frac{x+y}{1-xy}},

We can find the value of x;

So, \tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} =\frac{\pi}{4}

on applying,

\tan^{-1}{\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1- \left ( \frac{x-1}{x-2} \right )\left ( \frac{x+1}{x+2} \right )}}

=\tan^{-1}\frac{\frac{(x-1)(x+2)+(x-2)(x+1)}{x^2-4}}{1-\frac{x^2-1}{x^2-4}} = \tan^{-1} \left [ \frac{2x^2-4}{-3} \right ] = \frac{\pi}{4}

=\frac{2x^2-4}{-3} = \tan (\frac{\pi}{4})=1

2x^2=1    or   x = \pm \frac{1}{\sqrt{2}},

Hence, the possible values of x are \pm \frac{1}{\sqrt{2}}.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads