Get Answers to all your Questions

header-bg qa

Q11.    If x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}, find the values of x and y.

Answers (1)

best_answer

  x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

     \begin{bmatrix}2x\\3x \end{bmatrix} + \begin{bmatrix} -y\\y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

Adding both the matrix in LHS and rewriting

           \begin{bmatrix}2x-y\\3x+y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

        2x-y=10........................1

         3x+y=5........................2

Adding equation 1 and 2, we get  

        5x=15

         x=3

Put the value of x in equation 2, we have

   3x+y=5

 3\times 3+y=5

  9+y=5 

  y=5-9

y=-4

      

 

 

 

 

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads