Get Answers to all your Questions

header-bg qa

21.  In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).

Answers (1)

best_answer

Let p be the principal amount and t be the time.

According to question,

\frac{dp}{dt} = (\frac{5}{100})p

\\ \implies \int\frac{dp}{p} = \int (\frac{1}{20})dt \\ \implies \log p = \frac{1}{20}t + C

\\ \implies p = e^{\frac{t}{20} + C}

Now, at t =0 , p = 1000

Putting these values,

\\ \implies 1000 = e^{\frac{(0)}{20} + C} = e^C

Also, At t=10

\\ \implies p = e^{\frac{(10)}{20} + C} = e^{\frac{1}{2}}.e^C = e^{\frac{1}{2}}.1000 \\ \implies p =(1.648)(1000) = 1648

After 10 years, the total amount would be Rs.1648

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads