Get Answers to all your Questions

header-bg qa

20.    In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 double itself in 10 years (loge 2 = 0.6931).

Answers (1)

best_answer

Let p be the principal amount and t be the time.

According to question,

\frac{dp}{dt} = (\frac{r}{100})p

\\ \implies \int\frac{dp}{p} = \int (\frac{r}{100})dt \\ \implies \log p = \frac{r}{100}t + C

\\ \implies p = e^{\frac{rt}{100} + C}

Now, at t =0 , p = 100 

and at t =10, p = 200

Putting these values,

\\ \implies 100 = e^{\frac{r(0)}{100} + C} = e^C

Also,

\\ \implies 200 = e^{\frac{r(10)}{100} + C} = e^{\frac{r}{10}}.e^C = e^{\frac{r}{10}}.100 \\ \implies e^{\frac{r}{10}} = 2 \\ \implies \frac{r}{10} = \ln 2 = 0.6931 \\ \implies r = 6.93

So value of r = 6.93%

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads