Get Answers to all your Questions

header-bg qa

22.    In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?

Answers (1)

best_answer

Let n be the number of bacteria at any time t.

According to question,

\frac{dn}{dt} = kn\ \ (k\ is\ a\ constant)

\\ \implies \int \frac{dn}{n} = \int kdt \\ \implies \log n = kt + C

Now, at t=0, n = 100000

\\ \implies \log (100000) = k(0) + C \\ \implies C = 5

Again, at t=2, n= 110000

\\ \implies \log (110000) = k(2) + 5 \\ \implies \log 11 + 4 = 2k + 5 \\ \implies 2k = \log 11 -1 =\log \frac{11}{10} \\ \implies k = \frac{1}{2}\log \frac{11}{10}

Using these values, for n= 200000

\\ \implies \log (200000) = kt + C \\ \implies \log 2 +5 = kt + 5 \\ \implies (\frac{1}{2}\log \frac{11}{10})t = \log 2 \\ \implies t = \frac{2\log 2}{ \log \frac{11}{10}}

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads