Get Answers to all your Questions

header-bg qa

Q. 14.9  In an intrinsic semiconductor the energy gap E_{g}  is  1.2\; eV.  Its hole mobility is much smaller than electron mobility and independent of  temperature. What is the ratio between conductivity at 600K  and that at 300K Assume that the temperature dependence of intrinsic carrier concentration n_{i} is given by

 n_{i}=n_{0}\; exp\left [ -\frac{E_{g}}{2K_{B}T} \right ]

 Where, n_{0}  is constant.

Answers (1)

best_answer

Energy gap of given intrinsic semiconductor = Eg = 1.2eV

temperature dependence of intrinsic carrier  concentration n_{i} is given by

                 n_{i}=n_{0}\; exp\left [ -\frac{E_{g}}{2K_{B}T} \right ]

  Where is constant, K_B is Boltzmann constant = 8.862 * 10^{-5}eV/K

T is temperature 

Initial temperature = T1 = 300K

the intrinsic carrier concentration at this temperature :

                                                               n_{i1} = n_0exp[\frac{-E_g}{2K_B*300}]

Final temperature = T2 = 600K

the intrinsic carrier concentration at this temperature :

                                                                 n_{i2} = n_0exp[\frac{-E_g}{2K_B*600}]

 

the ratio between the conductivities at 300K and at 600K  is equal to the ratio of their intrinsic carrier concentration at these temperatures

                      \frac{n_{i2}}{n_{i2}} = \frac{n_0exp[\frac{-E_g}{2K_B*600}]}{n_0exp[\frac{-E_g}{2K_B*300}]}

                         = exp\frac{E_g}{2K_B}[\frac{1}{300}-\frac{1}{600}]=exp[\frac{1.2}{2*8.62*10^{-5}}* \frac{2-1}{600}]

                           = exp[11.6] = 1.09 * 10^{5}

Therefore the ratio between the conductivities is 1.09 * 10^{5}.

                             

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads