Get Answers to all your Questions

header-bg qa

Q : 5    In Fig.\small 9.33, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that

(iii) \small ar(ABC)=2ar(BEC)

[Hint : Join EC and AD. Show that \small BE\parallel AC and  \small DE\parallel AB, etc.]

 

Answers (1)

best_answer

Let's join the CE and AD and draw EP \perp BC. It is given that \DeltaABC and \Delta BDE is an equilateral triangle.
So,   AB =BC = CA = a  and D is the midpoint of BC 
 \therefore BD = \frac{a}{2}= DE = BE
 Area of \Delta ABC = \frac{\sqrt{3}}{4}a^2 and 
Area of \DeltaBDE = \frac{\sqrt{3}}{4}(\frac{a}{2})^2= \frac{\sqrt{3}}{16}a^2

Hence, \small ar(BDE)=\frac{1}{4}ar(ABC) -------(1)

Since \DeltaABC and \Delta BDE are equilateral triangles.

Therefore, \angleACB = \angleDBE = 60^0

\Rightarrow BE || AC

\DeltaBAE and \DeltaBEC are on the same base BE and between the same parallels BE and AC.

Therefore, ar (\DeltaBAE) = ar(\DeltaBEC)

 \Rightarrow ar(\DeltaBAE) = 2 ar(\DeltaBED)   [since D is the median of \DeltaBEC ]

\Rightarrow \small ar(BDE)=\frac{1}{2}ar(BAE)

\Rightarrow \small ar(BDE)=\frac{1}{2}ar(BEC)

\\\Rightarrow ar(ABC) = 2 ar(BEC)

Hence proved.

Posted by

manish painkra

View full answer