Get Answers to all your Questions

header-bg qa

Q.11.    In how many ways can the letters of the word PERMUTATIONS be arranged if the

           (ii) vowels are all together?

Answers (1)

best_answer

There are 5 vowels in word PERMUTATIONS  and each appears once.

Since all 5 vowels are to occur together so can be treated as 1 object.

The single object with the remaining 7 objects will be 8 objects.

The 8 objects in which 2 T's repeat can be arranged as 

                                                                                         =\frac{8!}{2!} ways.

These 5 vowels can also be arranged in 5! ways.

Hence, using the multiplication principle, the required number of arrangements are 

                                                                                                                                 =\frac{8!}{2!}\times 5!=2419200   ways.

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads