In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E.
Then prove that
(i) O2– E2= (x2– a2)n (ii) 4OE = (x + a)2n- (x - a)2n
(i) (x+a)n= nC0xn + nC1xn-1 a1 + nC2xn-2 a2 + nC3xn-3 a3 + ….. + nCn an
Now, sum of odd terms,
O = nC0xn+ nC2xn-2 a2 + …….
& sum of even terms,
E = nC1xn-1 a1 + nC3xn-3 a3 + …..
Now, (x+a)n = O+E & (x-a)n = O – E
Thus, (O + E)(O – E) = (x + a)n(x – a)n
Thus, O2 – E2 = (x2 – a2)n
(ii)Here,
4OE = (O + E)2 – (O – E)2
= [(x+a)n]2 – [(x-a)n]2
= (x+a)2n – (x-a)2n