Get Answers to all your Questions

header-bg qa

In what direction should a line be drawn through the point (1, 2) so that its point of intersection with the line  x + y = 4 is at a distance √6/3 from the given point.

Answers (1)

Let the given line x+y=4 and the required line'l'intersect at B (a,b) 

 Slope of line'l'is m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{b-2}{a-1}

m=\tan \theta =\frac{b-2}{a-1}

 Given that AB=\frac{\sqrt{6}}{3}

So, by distance formula for point A(1,2) and B(a,b) we get d

=\sqrt{\left ( x_{2}-x_{1} \right )^{2}+\left ( y_{2}-y_{1} \right )^{2}}

\frac{\sqrt{6}}{3}=\sqrt{\left ( a-1 \right )^{2}+\left (b-2 \right )^{2}}

 \frac{6}{9}=\left ( a-1 \right )^{2}+\left (b-2 \right )^{2}

\frac{2}{3}=a^{2}+1-2a+b^{2}+4-4b

2=3a^{2}+3-6a+3b^{2}+12-12b

3a^{2}+3b^{2}+3-6a-12b+13=0..........(i))

 Point B(a,b)also satisfies x+y=4 

 a+b=4;  b=4-a 

 Putting the value of b in equation (i )we get  3a2+3(4-a)2-6a-12(4-a)+13=0   

 3a2+48+3a2-24a-6a-48+12a+13=0  

 6a2-18a+13=0 

Using the formula x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}

    a=\frac{-\left ( -18 \right )\pm \sqrt{\left ( -18 \right )^{2}-4*6*13}}{2*6}=\frac{18\pm \sqrt{324-312}}{12}

=\frac{18\pm \sqrt{12}}{12}=\frac{9\pm \sqrt{3}}{6}

 Putting the value of a in the equation we get 

b=4-\frac{\left (9\pm \sqrt{3} \right )}{6} =\frac{15\pm \sqrt{3}}{6}

 

 Now putting the value of a and b in equation \tan \theta =\frac{b-2}{a-1}

=\frac{\frac{\left (15 \pm \sqrt{3}\right )}{6}-2} {\frac{9\pm \sqrt{3} }{6}-1}=\frac{3 \pm \sqrt{3}}{3\pm \sqrt{3}}

  \tan \theta =\frac{\sqrt{3}+1}{\sqrt{3}-1} or \frac{\sqrt{3}-1}{\sqrt{3}+1}  

\theta =\tan ^{-1}\left (\frac{\sqrt{3}-1}{\sqrt{3}+1} \right )

\theta =\tan ^{-1}\left (\sqrt{3} \right )-\tan ^{-1}\left (1 \right )

 θ= 600-450=150 

 Similarly, taking\theta =\tan ^{-1}\left (\frac{\sqrt{3}+1}{\sqrt{3}-1} \right )

\theta =\tan ^{-1}\left (\sqrt{3} \right )+\tan ^{-1}\left (1 \right )

 θ= 600+450=1050

Posted by

infoexpert22

View full answer