Get Answers to all your Questions

header-bg qa

Q24  Integrate the functions  \frac{2 \cos x - 3\sin x }{6 \cos x + 4 \sin x }

Answers (1)

best_answer

Given function  \frac{2 \cos x - 3\sin x }{6 \cos x + 4 \sin x },

or simplified as \frac{2 \cos x - 3\sin x }{2(3 \cos x + 2 \sin x) }

Assume the 3\cos x +2\sin x =t

 \therefore (-3\sin x + 2\cos x )dx =dt

\implies \int \frac{2\cos x - 3\sin x }{6\cos x +4\sin x }dx = \int \frac{dt}{2t}

= \frac{1}{2}\int \frac{dt}{t}

= \frac{1}{2}\log|t| +C

Now, back substituted the value of t.

= \frac{1}{2}\log|3\cos x +2\sin x| +C, where C is any constant value.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads