Get Answers to all your Questions

header-bg qa

Q29  Integrate the functions \cot x \: log \sin x

Answers (1)

best_answer

Given function  \cot x \: log \sin x,

Assume the \log \sin x =t

 \therefore \frac{1}{\sin x }.\cos x dx =dt

\cot x dx =dt

\implies \int \cot x \log \sin x dx =\int t dt

= \frac{t^2}{2}+C

Now, back substituted the value of t.

= \frac{1}{2}(\log \sin x )^2+C, where C is any constant value.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads