Get Answers to all your Questions

header-bg qa

Q19  Integrate the functions e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )

Answers (1)

best_answer

e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )
It is known that
\int e^x[f(x)+f'(x)]=e^x[f(x)]+C

let 
f(x)=\frac{1}{x}\Rightarrow f'(x)=-\frac{1}{x^2}
Therefore the required solution of the given above integral is 
I = e^x.\frac{1}{x}+C

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads