Get Answers to all your Questions

header-bg qa

Q: Integrate the function 1(x2+1)(x2+4)

Answers (1)

best_answer

Given, 1(x2+1)(x2+4)

Let I=1(x2+1)(x2+4)

Now, Using partial differentiation,

1(x2+1)(x2+4)=Ax+B(x2+1)+Cx+D(x2+4)

1(x2+1)(x2+4)=(Ax+B)(x2+4)+(Cx+D)(x2+1)(x2+1)(x2+4)

1=(Ax+B)(x2+4)+(Cx+D)(x2+1)

1=Ax3+4Ax+Bx2+4B+Cx3+Cx+Dx2+D

(A+C)x3+(B+D)x2+(4A+C)x+(4B+D)=1

Equating the coefficients of x,x2,x3 and constant value,

A+C=0C=A
B+D=0B=D
4A+C=04A=C4A=AA=0=C
4B+D=14BB=1B=13=D

Putting these values in equation, we have

1(x2+1)(x2+4)=(0)x+13(x2+1)+(0)x+(13)(x2+4)

1(x2+1)(x2+4)=13(x2+1)+(13)(x2+4)

1(x2+1)(x2+4)dx=131(x2+1)dx131(x2+4)dx

=13tan1x1312tan1x2+C

I=13tan1x16tan1x2+C

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads