Get Answers to all your Questions

header-bg qa

Q: Integrate the function $\cos ^3 x e^{\log \sin x}$.

Answers (1)

best_answer

Given, $\cos ^3 x e^{\log \sin x}$

Let $I=\int \cos ^3 x e^{\log \sin x}$

Let $\cos x=t \Longrightarrow-\sin x d x=d t \Longrightarrow \sin x d x=-d t$ using the above substitution the integral is written as

$\therefore \int \cos ^3 x e^{\log \sin x} d x=\int \cos ^3 x \cdot \sin x d x$

$=\int \mathrm{t}^3 \cdot(-\mathrm{dt})$

$=-\int \mathrm{t}^3\cdot \mathrm{dt}$

$=-\frac{\mathrm{t}^4}{4}+\mathrm{C}$

$=-\frac{\cos ^4 \mathrm{x}}{4}+\mathrm{C}$

$I=-\frac{\cos ^4 x}{4}+C$

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads