Get Answers to all your Questions

header-bg qa

Integrate the functions in Exercises 1 to 24.

    Q15.    \cos^3 x \;e^{\log\sin x}

Answers (1)

best_answer

Given,

\cos^3 x \;e^{\log\sin x}

I = \int \cos^3 x \;e^{\log\sin x} (let)

Let cos x = t \implies -sin x dx = dt \implies sin x dx = -dt

using the above substitution the integral is written as

\therefore \int cos^3xe^{\log sinx}dx = \int cos^3x.sinx dx

I = -\frac{cos^4x}{4} + C

 

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads