Get Answers to all your Questions

header-bg qa

Integrate the functions in Exercises 1 to 24.

    Q16.    e^{3\log x} (x^4 + 1)^{-1}

Answers (1)

best_answer

Given the function to be integrated as

e^{3\log x} (x^4 + 1)^{-1}
= e^{\log x^3}(x^4 + 1)^{-1} = \frac{x^3}{x^4 + 1}

Let I = \int e^{3\log x} (x^4 + 1)^{-1}

Let x^4 = t \implies 4x^3 dx = dt

I = \int e^{3\log x} (x^4 + 1)^{-1} = \int \frac{x^3}{x^4 + 1}

\implies I = \frac{1}{4}\log(x^4 +1) + C

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads