Get Answers to all your Questions

header-bg qa

Q: Integrate the function $e^{3 \log x}\left(x^4+1\right)^{-1}$.

Answers (1)

best_answer

Given the function to be integrated as $e^{3 \log x}\left(x^4+1\right)^{-1}$
$=e^{\log x^3}\left(x^4+1\right)^{-1}=\frac{x^3}{x^4+1}$

$I=\int e^{3 \log x}\left(x^4+1\right)^{-1}$

Let $x^4=t \Longrightarrow 4 x^3 d x=d t$

$I=\int e^{3 \log x}\left(x^4+1\right)^{-1}=\int \frac{x^3}{x^4+1}$

$=\frac{1}{4} \cdot \int \frac{1}{\mathrm{t}+1} \cdot \mathrm{dt}$

$=\frac{1}{4} \log (\mathrm{t}+1)+\mathrm{C}$

$\Longrightarrow I=\frac{1}{4} \log \left(x^4+1\right)+C$

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads