Q: Integrate the function $\frac{1}{\sqrt{\sin ^3 x \sin (x+\alpha)}}$.
Given, $\frac{1}{\sqrt{\sin ^3 x \sin (x+\alpha)}}$
Let $I=\int \frac{1}{\sqrt{\sin ^3 x \sin (x+\alpha)}}$
We know the identity that
$\sin (A+B) = \sin A \cos B + \cos A \sin B$
$\therefore \frac{1}{\sqrt{\sin ^3 x \sin (x+\alpha)}}=\frac{1}{\sqrt{\sin ^3 x(\sin x \cos \alpha+\cos x \sin \alpha)}}$
$=\frac{1}{\sqrt{\sin ^3 x \cdot \sin x(\cos \alpha+\cot x \sin \alpha)}}=\frac{1}{\sqrt{\sin ^4 x(\cos \alpha+\cot x \sin \alpha)}}$
$\frac{\operatorname{cosec}^2 x}{\sqrt{(\cos \alpha+\cot x \sin \alpha)}}$
Now, let $(\cos \alpha+\cot \mathrm{x} \sin \alpha)=\mathrm{t} \Rightarrow-\operatorname{cosec}^2 \mathrm{x} \cdot \sin \alpha \mathrm{dx}=\mathrm{dt}
$\Rightarrow \int \frac{1}{\sqrt{\sin ^3 \mathrm{x} \sin (\mathrm{x}+\alpha)}} \mathrm{dx}=\int \frac{\operatorname{cosec}^2 \mathrm{x}}{\sqrt{(\cos \alpha+\cot \mathrm{x} \sin \alpha)}} \mathrm{dx}$
$=\int \frac{1}{\sqrt{\mathrm{t}}} \cdot-\frac{\mathrm{dt}}{\sin \alpha}$
$=-\frac{1}{\sin \alpha} \int \frac{1}{\sqrt{\mathrm{t}}} \cdot \mathrm{dt}$
$=-\frac{1}{\sin \alpha} \int \mathrm{t}^{-\frac{1}{2}} \cdot \mathrm{dt}$
$=-\frac{1}{\sin \alpha}\left[\frac{\mathrm{t}^{\frac{1}{2}}}{\frac{1}{2}}\right]+\mathrm{C}$
$=-\frac{2}{\sin \alpha}[\sqrt{\mathrm{t}}]+\mathrm{C}$
$=-\frac{2}{\sin \alpha}[\sqrt{(\cos \alpha+\cot \mathrm{x} \sin \alpha)}]+\mathrm{C}$
$=-\frac{2}{\sin \alpha}\left[\sqrt{\left(\cos \alpha+\frac{\cos \mathrm{x}}{\sin \mathrm{x}} \sin \alpha\right)}\right]+\mathrm{C}\end{aligned}$
$=-\frac{2}{\sin \alpha}\left[\sqrt{\frac{(\cos \alpha \sin x+\cos x \sin \alpha)}{\sin x}}\right]+C$
$\Rightarrow I=-\frac{2}{\sin \alpha}\left[\sqrt{\frac{\sin (x+\alpha)}{\sin x}}\right]+C\end{aligned}$
Given, $\frac{1}{\sqrt{\sin ^3 x \sin (x+\alpha)}}$
Let $I=\int \frac{1}{\sqrt{\sin ^3 x \sin (x+\alpha)}} d x$
We know
$\sin (A+B) = \sin A \cos B + \cos A \sin B$
$\therefore \frac{1}{\sqrt{\sin ^3 x \sin (x+\alpha)}}=\frac{1}{\sqrt{\sin ^3 x(\sin x \cos \alpha+\cos x \sin \alpha)}}$
$=\frac{1}{\sqrt{\sin ^3 x \cdot \sin x(\cos \alpha+\cot x \sin \alpha)}}=\frac{1}{\sqrt{\sin ^4 x(\cos \alpha+\cot x \sin \alpha)}}$
$\frac{\operatorname{cosec}^2 x}{\sqrt{(\cos \alpha+\cot x \sin \alpha)}}$
$(\cos \alpha+\cot x \sin \alpha)=t$
Let $\Longrightarrow-\operatorname{cosec}^2 x \cdot \sin \alpha d x=d t$
$\therefore I=\frac{-1}{\sin \alpha} \int \frac{1}{\sqrt{t}} d t$
$=-\frac{1}{\sin \alpha} \int \mathrm{t}^{-\frac{1}{2}} \cdot \mathrm{dt}$
$=-\frac{2}{\sin \alpha}[\sqrt{\mathrm{t}}]+\mathrm{C}$
$=-\frac{2}{\sin \alpha}[\sqrt{(\cos \alpha+\cot \mathrm{x} \sin \alpha)}]+\mathrm{C}$
$=-\frac{2}{\sin \alpha}\left[\sqrt{\left(\cos \alpha+\frac{\cos x}{\sin x} \sin \alpha\right)}\right]+C$
$=-\frac{2}{\sin \alpha}\left[\sqrt{\frac{(\cos \alpha \sin x+\cos x \sin \alpha)}{\sin x}}\right]+C$
$\therefore I=\frac{-2}{\sin \alpha} \sqrt{\frac{\sin (x+\alpha)}{\sin x}}+C$