Get Answers to all your Questions

header-bg qa

Integrate the functions in Exercises 1 to 9.

    Q7.    \sqrt{1 + 3x - x^2}

Answers (1)

best_answer

Given function \sqrt{1 + 3x - x^2},

So, let us consider the function to be;

I = \int\sqrt{1+3x-x^2}dx

 = \int\sqrt{(1-\left ( x^2-3x+\frac{9}{4}-\frac{9}{4} \right )}dx = \int \sqrt{\left ( 1+\frac{9}{4} \right )-\left ( x-\frac{3}{2} \right )^2}dx= \int \sqrt{\left ( \frac{\sqrt{13}}{2} \right )^2-\left ( x-\frac{3}{2} \right )^2}dx

And we know that, \int \sqrt{a^2-x^2}dx = \frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}+C

\therefore I = \frac{x-\frac{3}{2}}{2}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1}\left ( \frac{x-\frac{3}{2}}{\frac{\sqrt{13}}{2}} \right )+C

= \frac{2x-3}{4}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1}\left ( \frac{2x-3}{\sqrt{13}} \right )+C

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads