Get Answers to all your Questions

header-bg qa

Q9  Integrate the functions \frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 + 4 }}

Answers (1)

best_answer

The integral can be evaluated as follows

\frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 + 4 }}
let \tan x =t \Rightarrow sec^2x dx =dt

\Rightarrow \int \frac{\sec^2x}{\sqrt{\tan^2x+4}}dx = \int \frac{dt}{\sqrt{t^2+2^2}}
                                               \\= \log\left | t+\sqrt{t^2+4} \right |+C\\ =\log \left | \tan x+\sqrt{ tan^2x+4} \right |+C

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads