Get Answers to all your Questions

header-bg qa

Q31  Integrate the functions \frac{\sin x }{( 1+ \cos x )^2}

Answers (1)

best_answer

Given function  \frac{\sin x }{( 1+ \cos x )^2},

Assume the 1+\cos x =t

 \therefore -\sin x dx =dt

\implies \int \frac{\sin x}{(1+\cos x)^2}dx = \int -\frac{dt}{t^2}

= -\int t^{-2}dt

= \frac{1}{t}+C

Now, back substituted the value of t.

= \frac{1}{1+\cos x} +C, where C is any constant value.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads