Get Answers to all your Questions

header-bg qa

Q4  Integrate the functions  x \log x

Answers (1)

best_answer

Given function is
f(x)=x.\log x
We will use integration by parts method
\int x.\log xdx= \log x.\int xdx - \int(\frac{d(\log x)}{dx}.\int x dx)dx\\ \\ \int x\log xdx = \log x.\frac{x^2}{2}- \int (\frac{1}{x}.\frac{x^2}{2})dx\\ \int x\log xdx = \log x.\frac{x^2}{2}- \int \frac{x}{2}dx\\ \int x\log xdx = \log x.\frac{x^2}{2}- \frac{x^2}{4}+ C

Therefore, the answer is \frac{x^2}{2}\log x- \frac{x^2}{4}+ C
 

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads