Get Answers to all your Questions

header-bg qa

Q 6  Integrate the functions x^ 2 \log x

Answers (1)

best_answer

Given function is
f(x)=x^2.\log x
We will use integration by parts method
\int x^2.\log xdx= \log x.\int x^2dx - \int(\frac{d(\log x)}{dx}.\int x^2 dx)dx\\ \\ \int x^2\log xdx = \log x.\frac{x^3}{3}- \int (\frac{1}{x}.\frac{x^3}{3})dx\\ \int x^2\log xdx = \log x.\frac{x^3}{3}- \int \frac{x^2}{3}dx\\ \int x^2\log xdx = \log x.\frac{x^3}{3}- \frac{x^3}{9}+ C

Therefore, the answer is \log x.\frac{x^3}{3}- \frac{x^3}{9}+ C
 

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads