Get Answers to all your Questions

header-bg qa

Q 15  Integrate the functions ( x^2 + 1 ) \log x

Answers (1)

best_answer

Consider ( x^2 + 1 ) \log x

So, we have then: I = \int (x^2+1) \log x dx = \int x^2 \log x dx +\int \log x dx

Let us take I = I_{1} +I_{2}                  ....................(1)

Where, I_{1} = \int x^2\log x dx  and  I_{2} = \int \log x dx

So, I_{1} = \int x^2\log x dx

After taking \log x as a first function and x^2 as second function and integrating by parts, we get

I = \log x \int x^2dx -\int \left \{ \left ( \frac{d}{dx} \log x \right )\int x^2.dx \right \}dx

= \log x .\frac{x^3}{3} - \int \frac{1}{x}.\frac{x^3}{3} dx

= \log x .\frac{x^3}{3} - \frac{x^3}{9} +C_{1}                           ....................(2)

I_{2} = \int \log x dx

After taking \log x as a first function and 1 as second function and integrating by parts, we get

I_{2} = \log x \int 1.dx - \int \left \{ \left ( \frac{d}{dx}\log x \right ) \int 1.dx \right \}dx

= \log x .x -\int \frac{1}{x}. xdx

= x\log x -\int 1 dx

= x\log x -x +C_{2}                           ................(3)

Now, using the two equations (2) and (3) in (1) we get,

I = \frac{x^3}{3}\log x -\frac{x^3}{9} +C_{1} +x\log x - x +C_{2}

= \frac{x^3}{3}\log x -\frac{x^3}{9} +x\log x - x +(C_{1}+C_{2})

=\left ( \frac{x^3}{3}+x \right ) \log x -\frac{x^3}{9} -x+C

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads