Get Answers to all your Questions

header-bg qa

Q15  Integrate the rational functions \frac{1}{x^4 -1 }

Answers (1)

best_answer

Given function \frac{1}{x^4 -1 }

can be rewritten as \frac{1}{x^4 -1 } = \frac{1}{(x^2-1)(x^2+1)} =\frac{1}{(x+1)(x-1)(1+x^2)}

The partial fraction of above equation,

\frac{1}{(x+1)(x-1)(1+x^2)} = \frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{Cx+D}{(x^2+1)}

1 = A(x-1)(x^2+1) +B(x+1)(x^2+1)+(Cx+D)(x^2-1)

1 = A(x^3+x-x^2-1)+B(x^3+x+x^2+1)+Cx^3+Dx^2-Cx-D1 = (A+B+C)x^3 +(-A+B+D)x^2+(A+B-C)x+(-A+B-D) 

Now, equating the coefficient of x^3,x^2,x and constant term, we get

A+B+C = 0 and   -A+B+D = 0

A+B-C = 0   and   -A+B-D = 1 

 Solving these equations, we get

A= -\frac{1}{4}, B=\frac{1}{4},C=0,\ and\ D = -\frac{1}{2}

Therefore, 

\frac{1}{x^4-1} = \frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2(x^2+1)}

\implies \int \frac{1}{x^4-1}dx = -\frac{1}{4}\log|x-1| +\frac{1}{4}\log|x-1| -\frac{1}{2}\tan^{-1}x +C

= \frac{1}{4}\log|\frac{x-1}{x+1}| -\frac{1}{2}\tan^{-1}x +C

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads