Get Answers to all your Questions

header-bg qa

Q 4  Integrate the rational functions \frac{x }{( x-1)(x-2)(x-3)}

Answers (1)

best_answer

Given function \frac{x }{( x-1)(x-2)(x-3)}

Partial function of this function:

\frac{x }{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}

x = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2) .....(1)

Now, substituting x=1,2,\ and\ 3 respectively in equation (1), we get

A =\frac{1}{2},\ B=-2,\ and\ C=\frac{3}{2}

\therefore \frac{x}{(x-1)(x-2)(x-3)} = \frac{1}{2(x-1)} -\frac{2}{(x-2)}+\frac{3}{2(x-3)}

That implies \int \frac{x}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)} \right \}dx

= \frac{1}{2}\log|x-1|-2\log|x-2|+\frac{3}{2}\log|x-3|+C

 

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads