Get Answers to all your Questions

header-bg qa

Q7  Integrate the rational functions \frac{x }{( x^2+1 )( x-1)}

Answers (1)

best_answer

Given function \frac{x }{( x^2+1 )( x-1)}

Partial function of this function:

\frac{x }{( x^2+1 )( x-1)} = \frac{Ax+b}{(x^2+1)} +\frac{C}{(x-1)}

x = (Ax+B)(x-1)+C(x^2+1) 

x=Ax^-Ax+Bc-B+Cx^2+C

Now, equating the coefficients of x^2, x and the constant term, we get

A+C = 0

-A+B =1   and  -B+C = 0

On solving these equations, we get

A = -\frac{1}{2}, B= \frac{1}{2},\ and\ C=\frac{1}{2}

From equation (1), we get

\therefore \frac{x}{(x^2+1)(x-1)} = \frac{\left ( -\frac{1}{2}x+\frac{1}{2} \right )}{x^2+1}+\frac{\frac{1}{2}}{(x-1)}

\implies \int \frac{x}{(x^2+1)(x-1)}

=-\frac{1}{2}\int \frac{x}{x^2+1}dx+\frac{1}{2}\int \frac{1}{x^2+1}dx+\frac{1}{2} \int \frac{1}{x-1}dx

=- \frac{1}{4} \int \frac{2x}{x^2+1} dx +\frac{1}{2} \tan^{-1}x + \frac{1}{2} \log|x-1| +C

Now, consider  \int \frac{2x}{x^2+1} dx

and we will assume (x^2+1) = t \Rightarrow 2xdx =dt

So, \int \frac{2x}{x^2+1}dx = \int \frac{dt}{t} =\log|t| = \log|x^2+1|

\therefore \int \frac{x}{(x^2+1)(x-1)} =-\frac{1}{4}\log|x^2+1| +\frac{1}{2}\tan^{-1}x +\frac{1}{2}\log|x-1| +Cor

 \frac{1}{2}\log|x-1| - \frac{1}{4}\log|x^2+1|+\frac{1}{2}\tan^{-1}x +C

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads