Get Answers to all your Questions

header-bg qa

Solve the following pairs of equations:

(i) x+ y = 3.3 ;\frac{0\cdot 6}{3x-2y}= -1,3x-2y\neq 0
(ii) \frac{x}{3}+\frac{y}{4}= 4  , \frac{5x}{6}-\frac{y}{8}= 4
(iii) 4x+\frac{6}{y}= 15;6x-\frac{8}{y}= 14,y\neq 0
(iv) \frac{1}{2x}-\frac{1}{y}= -1;\frac{1}{x}+\frac{1}{2y}= 8,x,y\neq 0
(v)43x + 67y = – 24 ; 67x + 43y = 24
(vi) \frac{x}{a}+\frac{y}{b}= a+b;\frac{x}{a_{2}}+\frac{y}{b^{2}}= 2 \left ( a,b\neq 0 \right )


(vii)\frac{2xy}{xy}= \frac{2}{3};\frac{xy}{2x-y}= \frac{-3}{10};x+y\neq 0,2x-y\neq 0

Answers (1)

(i)Solution:
Given equations are    x + y = 3.3 … (1)
0.6 = 2y – 3x …(2)
Using elimination method in equation (1) and (2) we get
2x + 2y = 6.6   [multiply eq. (1) by 2]
–3x + 2y = 0.6
+        –       –
5x = 6
x = \frac{6}{5} = 1.2
Put x = 1.2 in (1) we get
1.2 + y = 3.3
y = 3.3 – 1.2
y = 2.1

(ii)Answer: y = 6 ; y = 8
Solution:

Given equations are :           
\frac{x}{3}+\frac{y}{4}= 4 ………(1)

\frac{5x}{6}-\frac{y}{8}= 4      ……….(2)

Multiply eq. (1) by 12 and eq. (2) by 24 and then add them.
We get
4x + 3y + 20x  -3y = 48 + 96
24x = 144

x= \frac{144}{24}= 6
x = 6
Put x = 6 in eq. (1) we have
\frac{6}{3}+\frac{y}{4}= 4
2+\frac{y}{4}= 4
\frac{y}{4}= 4-2
\frac{y}{4}= 2
y = 8

(iii)Solution:
Equation are:   4 x+\frac{6}{y}=15 \\… (1)

6 x-\frac{8}{y}=14… (2)

Multiply equation (1) by 6 and equation (2) by 4 and then subtract equation (2) from (1)

24x + \frac{36}{y} = 90

24x – 32/y = 56

–     +             –
 

\frac{36}{y}+\frac{32}{y}= 34

\frac{36+32}{y}= 34

68 = 34y

y = \frac{68}{34}= 2
y = 2
Put y = 2 in equation (1) we get

4x = 15 – 3
4x = 12
x = \frac{12}{4} = 3
x = 3
(iv)Solution:
Let \frac{1}{x} = u and \frac{1}{y} = v and put in the given equations

u/2 – v = – 1    … (1)

u + \frac{v}{2} = 8        … (2)
Multiply eq. (1) by 2 and subtract from eq. (2) we get
\frac{v}{2}+2v= 8+2
v + 4v = 10 × 2
5v = 20

v = \frac{20}{+5}= 4
v = 4
v = 1/y = 4\Rightarrow
y = \frac{1}{4}
Put v = 4 in equation (1) we get
u/2= –1 + 4
u = 6
\frac{1}{x} = 6
          (because 1/x = u)

\Rightarrow x= \frac{1}{6}
(v)Solution:

Equations are   43x + 67y = –24 … (1)
67x + 43y = 24 … (2)
Multiply equation (1) by 67 and equation (2) by 43 and then subtract equation (2) from (1)
2881x + 4489y = –1608
2881x + 1849y = 1032
–             –             –
2640y = –2640
y = –1
Put y = –1 in (1) we get
43x + 67(–1) = –24
43x = –24 + 67
43x = 43
x = 1
(vi)Solution:
Given equation are:
\frac{x}{a}+\frac{y}{b}= a+b
\frac{x}{a^{2}}+\frac{y}{b^{2}}= 2
\frac{x}{a}+\frac{y}{b}-\left ( a+b \right )= 0
\frac{x}{a^{2}}+\frac{y}{b^{2}}-2= 0
Using cross multiplication, we have

\frac{x}{\frac{-2}{b}+\frac{a}{b^{2}}+\frac{1}{b}}= \frac{-y}{\frac{-2}{a}+\frac{1}{a}+\frac{b}{b^{2}}}= \frac{1}{\frac{1}{ab^{2}}-\frac{1}{ba^{2}}}
\frac{x}{\frac{a-b}{b^{2}}}= \frac{-y}{\frac{-a+b}{a^{2}}}= \frac{1}{\frac{1}{ab^{2}}-\frac{1}{b^{2}}}
\frac{x}{\frac{a-b}{b^{2}}}=\frac{1}{\frac{+\left ( a-b \right )}{a^{2}b^{2}}}
x= \frac{\left ( a-b \right )\times a^{2} b^{2}}{b^{2}\left ( a-b \right )}
x = a2
\frac{-y}{\frac{-\left ( a-b \right )}{a^{2}}}= \frac{1}{\frac{\left ( a-b \right )}{a^{2}b^{2}}}
y = \frac{\left ( a-b \right )a^{2}b^{2}}{a^{2}\left ( a-b \right )}
y = b2
(vii)Solution:

\frac{2xy}{x+y}= \frac{3}{2} … (1)

\frac{xy}{2x+y}= \frac{-3}{10}… (2)
Inverse equation (1) & (2) then simplify them we get

\frac{x}{2xy}+\frac{y}{2xy}= \frac{2}{3}

\frac{1}{2y}+\frac{1}{2x}= \frac{2}{3} … (3)

\frac{2x}{xy}-\frac{y}{xy}= \frac{-10}{3}

\frac{2}{y}-\frac{1}{x}= \frac{-10}{3}…(4)

Divide equation (4) by 2 we get

\frac{2}{2y}-\frac{1}{2x}= \frac{-5}{3} … (5)
Add (3) and (5) we get

\frac{2}{2y}+\frac{1}{2y}= \frac{-5}{3}+\frac{2}{3}

\frac{2+1}{2y}= -\frac{5+2}{3}= \frac{-3}{3}= -1

2 + 1 = –2y

y = -\frac{3}{2}

Put y = -\frac{3}{2} in equation (4) we have

\frac{4}{-3}-\frac{1}{x}= \frac{-10}{3}

-\frac{10}{3}+\frac{4}{3}= \frac{-1}{x}

-\frac{6}{3}= \frac{-1}{x}

x= \frac{3}{6}= \frac{1}{2}

Posted by

infoexpert27

View full answer